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ABSTRACT 
 
In statistical process control, the control charts are the most powerful tools for 
assessing the process behaviour. The Shewhart S chart is a standard tool for 
determining process variability. Similar to S chart, the chart based on Median 
Absolute Deviation from the sample median namely MAD estimator is also 

considered robust for both normal and non-normal processes. As 
 ̅

  
 and       

are considered unbiased estimators of   so the process standard deviation can be 
estimated but the true standard deviation cannot be found because only one 
specific sample is considered. Under the remarkable properties of bootstrap 
methods, we have proposed bootstrap S chart through which the true process 
standard deviation can be estimated. The performance of proposed chart is 
estimated on the basis of in-control average run length, coverage probability and 
confidence width. As a result the proposed chart has performed better than the 
traditional S and MAD charts under the assumption of normality. The 
simulation study based on monte-carlo runs is conducted for the purpose and the 
application on a practical data set is also discussed to justify the findings.    
 
Keywords: Average Run Length (ARL), bootstrap, coverage probability, interval 
width, Median Absolute Deviation about median (MAD). 
 

1) INTRODUCTION 
 
The control charts are standard tools for measuring the process 
performance (Liu and Tang, 1996). These were developed in 1920‟s and 
now they have become powerful tools in statistical process control 
(Shewhart, 1931). When dealing with a quality characteristic, it is 
necessary to monitor both its mean value and the variability. Process 
variability can be monitored through a control chart for standard 
deviation, called S chart or the control chart for range, called an R chart 
(Montgomery, 2001). Since inherent variability in any process is always 
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present, the control charts can be used to determine when to leave the 
process alone (in control process) and when it needs some necessary 
adjustments (Grant & Leaven-Worth, 1996 and Montgomery, 2001). The 
S-chart is considered most useful for estimating variability if the process 
is generated from normal distribution but when the assumption of 
normality is violated, the robust estimator is needed. In the recent years, 
the chart based on Median Absolute Deviation about median (MAD) is 
considered more robust approach for estimating process variability than 
Shewhart S chart for both normal and non normal processes. Since a 
robust estimator is insensitive to changes in the underlying distribution 
and also resistant against the presence of outliers, it is recommended for 
estimating process variability for normal and non-normal processes 
(Shawiesh, 2008).    
 
In practice, it is difficult to estimate the correct population distribution 
when it is unknown. Therefore statisticians use simulation based 
methods. So these tools are increasingly becoming popular in Statistics 
(Wood 2005; Mills 2002; Simon, Atkinson, and Shevokas 1976). Such a 
resampling method is called “Bootstrap Method” which was developed 
by Efron (1979). Bootstrap methods can be used when statistical 
distribution of some population is unknown. Under good properties of 
bootstrap methods, we have recommended bootstrap S chart for 

estimating process variability. Since 
 ̅

  
 is an unbiased estimator of  , if the 

process is generated from normal distribution, the proposed estimator 
 ̿

  
 

based on bootstrap samples would be equal to   even if the population is 

not normal where estimator  ̿ is simply the mean of   ̅  generated from 
bootstrap samples because we know that the distribution of mean of any 
estimator would always be normal irrespective of the population 
distribution (application of C.L. theorem). 
 

2) REVIEW OF LITERATURE 
 
The Shewhart S-chart is one of the most frequently used tools in process 
control.  The S-chart is based on the process variability. The fundamental 
assumption in Shewhart charts is that the underlying distribution of the 
quality measurements should be normal but in cases when data violate 
the assumption of normality, the calculation of control limits is not so 
easy. Due to this reason the control charts based on bootstrap methods 
are getting popular. These methods use no distributional assumptions. 

http://www.amstat.org/publications/jse/v13n3/wood.html#Mills2002
http://www.amstat.org/publications/jse/v13n3/wood.html#Simon1976
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The standard bootstrap method was introduced by Efron (1979) for 
estimating the sampling distribution of a given statistic. Liu and Tang 
(1996) discussed the bootstrap methods for estimating the control limits. It 
was inferred in the paper that the Shewhart standard control limits could 
be calculated if the sample measurements follow normal distribution. But 
if the assumption of normality and assumption of independence of the 
sample violated then the calculation of control limits was not so simple. 
The former case was discussed by using the bootstrap methods based on 
central limit theorem and the later was discussed by applying moving 
block bootstrap method, which was a modification of standard bootstrap. 
The results showed that the control limits from bootstrap methods were 
very close to exact limits as compared to standard control limits. Based on 
the findings of Liu (1996), Stomberg (2001) gave the idea of using 
bootstrap limits for R-chart for process variability. The paper addressed 
the comparison of bootstrap R limits with the traditional control limits on 
the basis of performance measure Average Run Length (ARL). 
Furthermore two types of bootstrap methods i.e. non-parametric 
bootstrap and Jackknife method were used for the comparison. The 
results showed that bootstrap methods performed better in the 
calculation of control limits as compared to the traditional methods for 
both normal and non-normal data. 
 
Liu etal (2004) extended the concept of Liu and Tang (1996) by developing 
a moving block bootstrap control chart for dependent multivariate data. 
Liu (1995) has already discussed control charts for multivariate processes. 
Lie etal (2004) constructed a control chart based on Principle Component 
Analysis (PCA), and then a modified control chart based on moving block 
bootstrap was determined. The control limits of modified control chart 
were not based on independent and identically distributed (IID) 
assumption. The average run length and false alarm rate were used as 
performance measures. The simulated data and real life data were used to 
illustrate the results. The results showed that the MBB was better than 
PCA method for weakly dependent multivariate data.    
 
The performance of control chart can be tested through performance 
indicators like average run length. Klein (2000) developed a modified S-
control chart and the comparison was made with the traditional S-chart 
on the basis of average run length. The coverage probability and interval 
width are other performance indicators which are becoming popular. The 
coverage probability is confidence level for which we assume that the true 
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parameter would lie within the calculated intervals whereas the interval 
width is the difference between two control limits. Wang (2009) gave 
some methodologies for the calculation of exact average coverage 
probabilities as well as the exact confidence coefficients for the confidence 
intervals of discrete distributions. Li etal (2011) compared different 
confidence intervals calculated on the basis of difference between two 
Poisson rates. The comparison was being made on the basis of coverage 
probability and interval width. The most preferable interval was that 
which had minimum expected confidence width with highest coverage 
probability. Some analytical expressions of coverage probability and the 
expected length of confidence interval were developed in the recent years 
which proved their popularity as performance indicators for the control 
charts (Niwitpong, 2011; Yawsaeng and Mayureesawan, 2012). 
 

3) MATERIAL AND METHODS 
 
Let                 be random samples of size „m‟ where each sample is 
composed of a number of observations called subgroup size (n), the 
statistic of interest is calculated for each sample and control limits are 
based on that statistic. The control limits are termed as lower control limit 
(LCL) and upper control limit (UCL) while the control line (CL) is the 
central line of upper and lower limit. For example for calculating the 
process variability, the exact control limits based on population standard 
deviations     are formulated as: 
 

           √    
      (1) 

        (2) 

           √    
  =     (3) 

 

where    
      

    
 is bias adjusting constant,        √    

  and 

       √    
 .  

 
The values of bias adjusting constant under subgroup sizes (n) are 
calculated by Montgomery (2001).  
 

The estimator   is calculated for each sample. Since 
 ̅

  
  is an unbiased 

estimator of process standard deviation  , the control limits for S-chart 
can be calculated as: 
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      ̅   
 ̅

  
√    

     ̅ (4) 

     ̅ (5) 

      ̅   
 ̅

  
√    

     ̅ (6) 

 

where      
 

  
√    

  and      
 

  
√    

 . The formulas are 

available in most of quality related books (for further details see 

Montgomery, 2001). 
 
The Median Absolute Deviation (MAD) is robust scale estimator than the 
sample standard deviation because it can measure the deviation from 
sample medians (Hampel, 1974). If we take a random sample of „n‟ 
observations                then MAD estimator is defined as: 
 

            {|     |}                    
 
where MD is sample median. 
 
Shawiesh (2008) developed control limits for Shewhart S-chart using 
MAD estimator. Since       is an unbiased estimator of   (Rousseeuw 
& Croux, 1993), the control limits for S-chart based on MAD estimator can 

be transformed as        ̅̅ ̅̅ ̅̅ ̅        ̅̅ ̅̅ ̅̅ ̅√    
  

 
Finally the lower and upper control limits based on MAD estimator can 
be defined as: 
 
              ̅̅ ̅̅ ̅̅ ̅    

    ̅̅ ̅̅ ̅̅ ̅ (7) 
         ̂         ̅̅ ̅̅ ̅̅ ̅    

    ̅̅ ̅̅ ̅̅ ̅ (8) 
              ̅̅ ̅̅ ̅̅ ̅    

    ̅̅ ̅̅ ̅̅ ̅ (9) 
 
where    is the correction factor. Against different subgroup sizes, the 
values of     are calculated by Shawiesh (2008). Under subgroup size 4, 5, 
10, 15, 20 and 25, the values of correction factor    are 1.363, 1.206, 1.087, 
1.056, 1.042, 1.033. Similarly the transformed values of   

          
  

           
       can be calculated using the values of correction factor 

  .  
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3.1) Bootstrap S-chart: 
 
The bootstrap method is used to select a large number of with 
replacement samples from one original sample (Efron and Tibshirani, 
1993). The estimator  ̅ is calculated for each bootstrap sample and mean 

of all   ̅ is used as an estimate of  . Since the bootstrap  ̿ has a normal 
distribution (due to the central limit theorem), the control limits can easily 
be formed as: 
 

             ̿    (10) 

          ̿    (11) 

             ̿    (12) 
 
3.2) Average Run Length (ARL): 
 
The Average Run Length (ARL) is a well-known measure through which 
the performance of control chart can be determined. An in-control run 
length determines the maximum number of observations within the 
control limits before first out of control signal appears provided that the 
process is actually in control. Average run length is the mean of run 
length if the process is repeated a large number of times. It can be 
computed as: 
 

    
 

 
   (13) 

                    
 
where   is parameter. 
 
Within    control limits for a normal process, p is approximately 0.0027 
and hence the average run length is 370. The greater value of in-control 
average run length shows the better performance of the control chart 
(Montgomery, 2001).  
 
3.3) Coverage Probability: 
 
The coverage probability is known as the confidence level of the control 
limits. The coverage probability is termed as:  
 
Coverage Probability (C.P) = (     (14) 
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4) RESULTS 
 
The results are based on the simulation studies conducted in two parts. In 
first part the control limits of S, MAD, bootstrap S charts are computed 
and in the second section the simulations are applied for the calculation of 
average run length, confidence width of the control limits and coverage 
probability. 
 
4.1) Simulation Example A: 
 
The simulation study is made for the construction of control limits. The 
random numbers for 30 samples (m=30) are generated from standard 
normal distribution under different subgroup sizes i.e. n= 4, 5, 10, 15, 20, 
25.  The control limits of standard S (eq. 4, 5, 6), MAD (eq. 7, 8, 9) and 
bootstrap S (eq. 10, 11, 12) charts are calculated in table 1 while 1000 
bootstrap samples are considered for the construction of bootstrap limits. 
The exact control limits (eq. 1, 2, 3) are also calculated on the basis of true 
process standard deviation (   ) so that the comparison could easily be 
made. The programme is written in R-language for the purpose.  
 
The findings of table 1 showed that for a normally distributed process, the 
bootstrap S control limits are relatively close to the exact control limits of 
the process as compared to the control limits based on MAD estimator. 
The bootstrap S limits showed better approximation of exact limits of the 
process under small (n= 4, 5), moderate (n= 10, 15) and large (n= 20, 25) 
subgroup sizes.  The supporting evidence is shown in Fig. 1 through 
which the comparison of the control limits can be made.  
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Table 1: Calculation of Control Limits for N (0,1) and m = 30 

 

Control Limits 
Subgroup Size 

4 5 10 15 20 25 

Upper 
Control 
Limit 
(UCL) 

S 
MAD 
Exact 
Bootstrap-S 

2.125 
2.259 
2.088 
2.074 

1.829 
1.832 
1.964 
1.900 

1.747 
1.792 
1.669 
1.725 

1.541 
1.573 
1.544 
1.546 

1.447 
1.460 
1.470 
1.460 

1.429 
1.358 
1.420 
1.424 

Central 
Line (CL) 

S 
MAD 
Exact 
Bootstrap-S 

0.938 
0.997 
0.921 
0.915 

0.876 
0.877 
0.940 
0.910 

1.018 
1.044 
0.973 
1.005 

0.981 
1.001 
0.982 
0.983 

0.971 
0.980 
0.987 
0.980 

0.996 
0.946 
0.990 
0.992 

Lower 
Control 
Limit 
(LCL)  

S 
MAD 
Exact 
Bootstrap-S 

0 
0 
0 
0 

0 
0 
0 
0 

0.289 
0.296 
0.276 
0.286 

0.4197 
0.429 
0.421 
0.421 

0.495 
0.499 
0.504 
0.499 

0.563 
0.534 
0.559 
0.561 

 
The three line graphs are constructed using the findings of table 1. Figure 
1(a, b & c) shows the graphical representation of the simulated lower 
control limits, control lines and upper control limits of the S, MAD and 
bootstrap-S charts respectively. The exact control limits of the process are 
also plotted on the graph so that the comparison can be made.  
 
The lower control limits are very close to each other for three charts under 
study and hence also close to the exact limits of the process (Figure 1.a). 
The trend is same for all subgroup sizes (i.e. 4, 5, 10, 15, 20, 25) but the 
control lines and upper control limits of bootstrap-S chart are relatively 
closer to the exact limits of the process as compared to S and MAD charts 
(Figure 1.b & c).   
 

 
(a) Line graph of lower control limits (LCL) 
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(b) Line graph of control lines (CL) (c) Line graph of upper control limits 

(UCL) 

 
Figure 1: Line graphs of simulated limits of S, MAD, exact and bootstrap-S control 

charts under different subgroup sizes (n) 

 
4.2) Simulation Example B: 
 
The most commonly used performance indicator is called average run 
length. Similarly the coverage probability is another indicator used in 
literature. For the purpose, a Monte-Carlo simulation study is being used. 
The ten thousand (10000) samples are generated from standard normal 
distribution. The control limits based on normal process are calculated for 
MAD and bootstrap S charts where 100 bootstrap samples (B=100) are 
considered for the purpose. The run length is the maximum number of 
samples required before the first out of control signal appears if the 
process is actually in control. Out of 10000 samples, the number of that 
sample is calculated as run length after which the first point goes beyond 
the control limits. The run length is calculated for the above mentioned 
three charts. After 1000 Monte-Carlo runs (R=1000), the means of run 
lengths of S, MAD and bootstrap S charts are considered as average run 
lengths of these charts. The process is separately applied under different 
subgroup sizes (i.e. n= 4, 5, 10, 15, 20, 25).  
 
Table 2 showed the ARL under small, moderate and large subgroup sizes. 
The findings clearly showed that in-control average run length of 
bootstrap S chart is higher than the MAD chart for all subgroup sizes.   
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As we know that the coverage probability is one minus the reciprocal of 
average run length which means that the higher the average run length 
the higher is the coverage probability.  But literature shows that the most 
preferable confidence interval is that which has higher coverage 
probability (near to nominal value) with smaller interval width (Li etal, 
2011). The control interval width is calculated by taking difference of 
upper and lower control limits. Over 1000 monte-carlo runs, the six box 
plots of control interval width are constructed for different subgroup 
sizes. As shown in the table 2 that bootstrap S chart has higher coverage 
probability (close to the nominal value = 0.9973 for    limits) as compare 
to MAD chart under all subgroup sizes. Furthermore bootstrap S chart 

can also help in estimating true process standard deviation. Since  
 ̿    

  
  is 

a true estimator of    (which is equal to 1 for our case), we can take  
      

  
 

for estimating  . Table 3 shows that amount of bias is very low which 

means that 
 ̿    

  
  is close to the process standard deviation    . 

 
Table 2: In-control Average Run Length along with coverage probability under 

different subgroup sizes (n). 
 

Subgroup size 
(n) 

Control Chart 

MAD Bootstrap-S 

     
Coverage 

probability 
     

Coverage 
probability 

4 253.79 0.99606 263.96 0.99621 

5 221.14 0.99550 245.12 0.99592 

10 275.51 0.99637 336.50 0.99703 

15 336.10 0.99703 363.72 0.99725 

20 346.27 0.99711 350.48 0.99715 

25 385.49 0.99741 385.02 0.99740 
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Table 3: Amount of Bias of bootstrap S chart under different subgroup sizes (n) with 
   . 

 

Subgroup 
size 

   True estimate of   
 ̿    

  
 Amount of bias = 

 ̿    

  
   

4 0.9213 0.9932 -0.0068 

5 0.9400 0.9681 -0.0319 

10 0.9727 1.0332 0.0332 

15 0.9823 1.0007 0.0007 

20 0.9869 0.9930 -0.0070 

25 0.9896 1.0024 0.0024 

 
The boxplot is a graphical representation of five-points summary of a data 
set i.e. maximum value, third quartile, median, first quartile and 
minimum value. It also shows the variability in the data. In figure 2, the 
six boxplot are constructed on 1000 (R=1000) simulated interval widths of 
the control limits of MAD and bootstrap-S charts. It is shown in figure 
2(a)-(f) that under small (n=4,5), moderate (n=10,15) and large (n=20,25) 
subgroup sizes, the bootstrap S-chart has consistent interval widths which 
ultimately shows less variability in interval widths as compared to MAD 
chart. Although the median interval width is relatively higher in 
bootstrap-S chart for n=5, 10, 15 and 20 but the boxplots are more 
conservative on all subgroup sizes under study.  
 

 
 

(a) n=4, R=1000 (b) n=5, R=1000 
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(c) n=10, R=1000  (d) n=15, R=1000 

 

 
 

(e) n=20, R=1000 (f) n=25, R=1000 

 

 
Figure 2: Boxplots of the 1000 simulated interval widths of the control limits of 

MAD and bootstrap-S charts under different subgroup sizes (n).  
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4.3) Example C: Piston Rings Data 
 
The practical data is considered from the standard text book of statistical 
quality control to illustrate the use of proposed control chart (see example 
5-3, Montgomery, 2001). The inside diameter of the 25 piston rings (each 
of size 5) manufactured by this process is considered. 
 
To justify the findings of the simulation results, the control limits on 
practical data are being calculated in table 5. As the simulation results in 
the previous section showed that bootstrap S limits are very close to the 
exact limits of the process under normality condition so we can expect 
that they are more precise limits.  
 
For the piston ring data showed in table 4, the assumption of normality is 
confirmed by testing through Shapiro Wilk test of normality. The control 
limit of S and MAD are calculated by using eq. 4-6 & 7-9 while bootstrap S 
limits are constructed by using eq. 10-12 for which 1000 bootstrap 
samples are considered.  
 

Table 4: Piston ring data for 25 samples 

 
Sample No. Observations 

1 74.030 74.002 74.019 73.992 74.008 

2 73.995 73.992 74.001 74.011 74.004 

3 73.988 74.024 74.021 74.005 74.002 

4 74.002 73.996 73.993 74.015 74.009 

5 73.992 74.007 74.015 73.989 74.014 

6 74.009 73.994 73.997 73.985 73.993 

7 73.995 74.006 73.994 74.000 74.005 

8 73.985 74.003 73.993 74.015 73.988 

9 74.008 73.995 74.009 74.005 74.004 

10 73.998 74.000 73.990 74.007 73.995 

11 73.994 73.998 73.994 73.995 73.990 

12 74.004 74.000 74.007 74.000 73.996 

13 73.983 74.002 73.998 73.997 74.012 

14 74.006 73.967 73.994 74.000 73.984 

15 74.012 74.014 73.998 73.999 74.007 

16 74.000 73.984 74.005 73.998 73.996 

17 73.994 74.012 73.986 74.005 74.007 

18 74.006 74.010 74.018 74.003 74.000 
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Sample No. Observations 

19 73.984 74.002 74.003 74.005 73.997 

20 74.000 74.010 74.013 74.020 74.003 

21 74.982 74.001 74.015 74.005 73.996 

22 74.004 73.999 73.990 74.006 74.009 

23 74.010 73.989 73.990 74.009 74.014 

24 74.015 74.008 73.993 74.000 74.010 

25 73.982 73.984 73.995 74.017 74.013 

 
The findings of the table 5 showed that MAD control limits are far beyond 
the S and bootstrap S limits. The advantage of bootstrap limits is that 
through these limits the original process standard deviation can be 

calculated. The 
 ̿    

  
 is true estimator of   which can easily be computed 

by using 
      

  
  (where   =0.9400). So we can expect the true process 

standard deviation of the inside diameter of piston rings is 0.00999. 
 
Table 5: Calculation of S, MAD and bootstrap S control limits for piston ring data. 

 

Control Chart 
Control limits 

LCL CL UCL 

S 0 0.0094 0.0196 

MAD 0 0.01036 0.02164 

Bootstrap S 0 0.00939 0.01961 

 

5) CONCLUSION 
 
The control limits are same as confidence interval in hypothesis testing. 
Similar to the acceptance region in testing problems, we expect that the 
most precise control limits are those which can truly estimate the 
population parameter with smaller confidence width.  
 
Shawiesh (2008) proved that robust MAD estimator is still efficient under 
the normally distributed process because the control limits based on 
MAD estimator have more number of out of control points as compared 
to the Shewhart S chart. Our simulated results show that bootstrap S 
control chart has better performance as compared to the robust MAD 
chart under the assumption of normality. It is proved through simulations 
that the proposed chart has better in-control average run length, high 
coverage probability (close to the nominal value) and smaller expected 
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interval width. The boxplot in figure 2 showed that bootstrap S chart will 
always exhibit precise interval width of containing original process 
standard deviation under different subgroup sizes. The precision of 
control intervals can also be ensured through the coverage probability 
close to the nominal value 0.9973 (as shown in table 2).  
 
The bootstrap S chart can also help in knowing true process standard 
deviation which is usually unknown in practice. A large number of 
bootstrap samples can provide unbiased estimator of process standard 
deviation. The results showed that under standard normal process the 

mean of bootstrap 
 ̅ 

  
 is true estimator of process standard deviation which 

can easily be calculated by using the value of central line of bootstrap S 

chart divided by   . The simulation results of table 3 showed that 
 ̿    

  
 was 

very close to the true value of process standard deviation     from 
which the process was generated. Furthermore on the basis of smaller 
amount of bias, the most recommended subgroup size is 15. 
 
Under good theoretical properties of bootstrap methods, its application 
on the statistical process control is becoming popular. The future research 
can be carried out on the comparison of different bootstrap methods for 
the calculation of control limits. Furthermore these methods may have 
wide application in multivariate processes (Liu and Tang, 1996). 
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